If it's not what You are looking for type in the equation solver your own equation and let us solve it.
)4^3x/7x)=32-x
We move all terms to the left:
)4^3x/7x)-(32-x)=0
Domain of the equation: 7x)-(32!=0We add all the numbers together, and all the variables
x∈R
)4^3x/7x)-(-1x+32)=0
We add all the numbers together, and all the variables
-1x+)4^3x/7x)-(=0
We multiply all the terms by the denominator
-1x*7x)-(+)4^3x=0
We add all the numbers together, and all the variables
-1x*7x)-04^3x=0
Wy multiply elements
-7x^2=0
a = -7; b = 0; c = 0;
Δ = b2-4ac
Δ = 02-4·(-7)·0
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$x=\frac{-b}{2a}=\frac{0}{-14}=0$
| 4^3x/7x=32-x | | 2.5(x+7.5)=20 | | -4(5x+5)=-48 | | -21r^2-r+10=0 | | 16x+32=18x+48 | | -56c=20 | | -4p-8(2p+9)=0 | | c=1533 | | 5p+3/5=1 | | 2=(x+3) | | 44.1=63x | | 3x-2=26+(-5x) | | 3-7(-8n+6)=0 | | X2-20+8x=0 | | 3-7(-8n=6) | | 8(t-2)=7(t-15) | | 3(3p+2)=96 | | 3(3f+8)=3(7f+4) | | 2(3d-6)=6 | | 8(t+6)=4(t+5) | | 3(2e+5)=87 | | 2(7q-3)=2(6q+11) | | 3(3r-4)=42 | | 2(5h-5)=4(h+5) | | 4(2w-2)=16 | | 6(h-13)=3(h+7) | | 3(j+6)=42 | | 7(v-2)=4(v+10) | | 2(3x-4)-3(x+1)=5 | | 2=x−5 | | 9x-12=3x+16+6 | | 1/x+3=x-3/7 |